Книга: ПРОГРАММИРОВАНИЕ НА ЯЗЫКЕ ПРОЛОГ

7.11. Символьное дифференцирование

7.11. Символьное дифференцирование

Символьным дифференцированием в математике называется операция преобразования одного арифметического выражения в другое арифметическое выражение, которое называется производной. Пусть U обозначает арифметическое выражение, которое может содержать переменную х. Производная от U по х записывается в виде dU/dx и определяется рекурсивно с помощью некоторых правил преобразования, применяемых к U. Вначале следуют два граничных условия. Стрелка означает «преобразуется в»; U и V обозначают выражения, а с – константу:

dc/dx 0

dx/dx 1

d(-U)/dx -(dU/dx)

d(U+V)/dx ? dU/dx+dV/dx

d(U-V)/dx dU/dx-dV/dx

d(cU)/dx c(dU/dx)

d(UV)/dx U(dV/dx) + V(dU/dx)

d(U/V)dx d(UV-1)/dx

d(Uc)/dx cUc-l(dU/dx)

d(lnU)/dx U-1(dU/dx)

Этот набор правил легко написать на Прологе, поскольку мы можем представить арифметические выражения как структуры и использовать знаки операций как функторы этих структур. Кроме того, сопоставление целевого утверждения с заголовком правила мы можем использовать как сопоставление образцов. Рассмотрим цель d(E,X, F), которая считается согласованной, когда производная выражения E по константе[12]X есть выражение F. Помимо знаков операций +, -, *, /, которые имеют встроенные определения, нам нужно определить операцию ^, такую, что X^Y означаете xy, а также одноместную операцию ~, такую что означает «минус X». Эти определения операций введены исключительно для того, чтобы облегчить распознавание синтаксиса выражений. Например, после того как d определен, можно было бы задать следующие вопросы:

?- d(x+1,x,X).

X = 1+0

?- d(x*x-2,x,X).

 X = х*1+1*х-0

Заметим, что само по себе простое преобразование одного выражения в другое (на основе правил) не всегда дает результат в приведенной (упрощенной) форме. Приведение результата должно быть записано в виде отдельной процедуры (см. разд. 7.12). Программа дифференцирования состоит из определений дополнительных операций и построчной трансляции приведенных выше правил преобразования в утверждения Пролога:

?- op(10,yfx,^).

?- op(9,fx,~).

d(X,X,1):-!.

d(C,X,0):- atomic(C).

d(~U,X,~A):- d(U,X,A).

d(U+V,X,A+B):- d(U,X,A), d(V,X,B).

d(U-V,X,A-В):- d(U,X,A), d(V,X,B).

d(C*U,X,C*A):- atomic(C), C=X, d(U,X,A),!.

d(U*V,X,B*U+A*V):- d(U,X,A), d(V,X,B).

d(U/V,X,A):- d(U*V^~1),X,A).

d(U^C,X,C*U^(C-1)*W):- atomic(C),C=X,d(U,X,W).

d(log(U),X,A*U^(~1)):- d(U,X,A).

Обратите внимание на два места, в которых задан предикат отсечения. В первом случае отсечение обеспечивает тот факт, что производная от переменной по ней самой распознается только первым утверждением, исключая возможность применения второго утверждения. Во втором случае предусмотрено два утверждения для умножения. Первое – для специального случая. Если имеет место специальный случай, то утверждение для общего случая должно быть устранено из рассмотрения.

Как уже говорилось, данная программа выдает решения в неприведенной форме (т. е. без упрощений). Например, всякое вхождение х*1 может быть приведено к х, а всякое вхождение вида х*1+1*х-0 может быть приведено к 2*х. В следующем разделе рассматривается программа алгебраических преобразований, которую можно использовать для упрощения арифметических выражений. Примененный способ очень похож на тот, каким выше выводились производные.

Оглавление книги


Генерация: 0.105. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз