Книга: Учебное пособие по курсу «Нейроинформатика»

Общее описание

Общее описание

Пакет программ CLAB представляет собой программный имитатор нейрокомпьютера, реализованный на IBM PC/AT, и предназначен для решения задач бинарной классификации. Данный пакет программ позволяет создавать и обучать нейросеть для того, чтобы по набору входных сигналов (например, по ответам на заданные вопросы) определить принадлежность объекта к одному из двух классов, которые далее будем условно называть «красными» и «синими».

Пакет программ CLAB может использоваться в задачах медицинской диагностики, психологического тестирования, для предсказания результатов выборов и др.

В данном руководстве не рассматриваются теоретические вопросы (алгоритмы обучения и др.). Для желающих ознакомиться с ними приводится список литературы. Здесь мы ограничимся лишь информацией, необходимой для работы с пакетом.

Нейросеть представляет собой набор нейронов и синапсов. Через синапсы нейрон может получать сигналы от других нейронов, а также входные сигналы, если данный нейрон является входным. Сигналы, полученные нейроном от всех входящих в него синапсов, суммируются и преобразуются в выходной сигнал согласно характеристической функции (в пакете CLAB она имеет вид Y(x)=x/(c+abs(x))). Этот сигнал в следующий момент времени подается на все выходящие из нейрона синапсы.

Для создания нейросети при работе с пакетом CLAB пользователь сам указывает параметры нейросети (число нейронов и др., о чем далее будет рассказано подробно). В таких нейросетях общее число нейронов не должно превышать 64, при этом выходные сигналы снимаются с двух последних нейронов.

Каждому синапсу в нейросети поставлено в соответствие число, называемое весом синапса. Сигнал при прохождении через синапс умножается на его вес. Процесс обучения нейросети состоит в подборе весов синапсов. Они должны быть такими, чтобы после предъявления нейросети определенных входных сигналов получать требуемые выходные сигналы.

Таким образом, для обучения нейросети пользователь должен представить обучающую выборку, т. е. совокупность обучающих примеров. Она размещается в файле, называемом задачником.

Обучение производится путем минимизации целевой функции, штрафующей за отклонение выходных сигналов нейросети от требуемых значений. В пакете CLAB минимизация осуществляется при помощи метода, основанного на так называемой BFGS-формуле и являющегося разновидностью квазиньютоновских методов.

После завершения процесса обучения можно переходить непосредственно к решению задачи, стоящей перед пользователем. На этом этапе работы нейросети предъявляют наборы входных сигналов для классификации исследуемых объектов.

Оглавление книги


Генерация: 0.045. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз