Книга: Учебное пособие по курсу «Нейроинформатика»

Обучение персептрона. Правило Хебба

Обучение персептрона. Правило Хебба

Персептрон обучают по правилу Хебба. Предъявляем на вход персептрона один пример. Если выходной сигнал персептрона совпадает с правильным ответом, то никаких действий предпринимать не надо. В случае ошибки необходимо обучить персептрон правильно решать данный пример. Ошибки могут быть двух типов. Рассмотрим каждый из них.

Первый тип ошибки — на выходе персептрона 0, а правильный ответ — 1. Для того, чтобы персептрон (1) выдавал правильный ответ необходимо, чтобы сумма в правой части (1) стала больше. Поскольку переменные ?i принимают значения 0 или 1, увеличение суммы может быть достигнуто за счет увеличения весов ?i. Однако нет смысла увеличивать веса при переменных ?i, которые равны нулю. Таким образом, следует увеличить веса ?i при тех переменных , которые равны 1. Для закрепления единичных сигналов с ?i, следует провести ту же процедуру и на всех остальных слоях.

Первое правило Хебба. Если на выходе персептрона получен 0, а правильный ответ равен 1, то необходимо увеличить веса связей между одновременно активными нейронами. При этом выходной персептрон считается активным. Входные сигналы считаются нейронами.

Второй тип ошибки — на выходе персептрона 1, а правильный ответ равен нулю. Для обучения правильному решению данного примера следует уменьшить сумму в правой части (1). Для этого необходимо уменьшить веса связей ?i при тех переменных ?i, которые равны 1 (поскольку нет смысла уменьшать веса связей при равных нулю переменных ?i). Необходимо также провести эту процедуру для всех активных нейронов предыдущих слоев. В результате получаем второе правило Хебба.

Второе правило Хебба. Если на выходе персептрона получена 1, а правильный ответ равен 0, то необходимо уменьшить веса связей между одновременно активными нейронами.

Таким образом, процедура обучения сводится к последовательному перебору всех примеров обучающего множества с применением правил Хебба для обучения ошибочно решенных примеров. Если после очередного цикла предъявления всех примеров окажется, что все они решены правильно, то процедура обучения завершается.

Нерассмотренными осталось два вопроса. Первый — насколько надо увеличивать (уменьшать) веса связей при применении правила Хебба. Второй — о сходимости процедуры обучения. Ответы на первый из этих вопросов дан в следующем разделе. В работе [146] приведено доказательство следующих теорем:

Теорема о сходимости персептрона. Если существует вектор параметров ?, при котором персептрон правильно решает все примеры обучающей выборки, то при обучении персептрона по правилу Хебба решение будет найдено за конечное число шагов.

Теорема о «зацикливании» персептрона. Если не существует вектора параметров ?, при котором персептрон правильно решает все примеры обучающей выборки, то при обучении персептрона по правилу Хебба через конечное число шагов вектор весов начнет повторяться.

Доказательства этих теорем в данное учебное пособие не включены.

Оглавление книги


Генерация: 0.105. Запросов К БД/Cache: 0 / 0
поделиться
Вверх Вниз